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Abstract
This paper is concerned with the problem of testing for the equal

forecast accuracy of competing models using a bootstrap-based

Diebold-Mariano test statistic. The finite-sample properties of the

test are assessed via Monte Carlo experiments. As an illustration,

the forecast accuracy of the US Survey of Professional Forecast-

ers is compared to that of an autoregressive model. The empirical

results indicate that professionals beat AR models systematically

only for a single economic variable – the unemployment rate.
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1. INTRODUCTION
It is nowadays well understood that monetary policy should be forward-looking in order to effi-

ciently impact the economy and achieve its policy goals. For this purpose, central banks use a

suite of models to forecast key economic variables (see, e.g., Kapetanios, Labhard, and Price

(2008) for a survey). The evaluation of the forecast accuracy of competing models is thus of

the fundamental importance for central banks not only for selecting the “best” forecasting tools

but also for further development of the progressive forecasting methods.

Two classes of statistics for testing predictive ability have become particularly popular in the

literature: (i) equal predictive ability (EPA) tests (see, e.g., West (1996) and Diebold and Mari-

ano (1995)); and (ii) superior predictive ability (SPA) tests (see, e.g., White (2000) and Hansen

(2005)). We focus on the EPA family of tests for the following reasons: (i) Unlike the EPA statis-

tics, the SPA ones (e.g. the White’s reality check) require the specification of the benchmark

model for comparison. Forecast inference is thus conditional on the benchmark. In practice,

however, one can face situations when it might be difficult to find a natural benchmark (see Sec-

tion 4 for an example); (ii) Moreover, inference from the SPA tests seems to be more suitable

when comparing a large number (i.e. hundreds or even more) of competing models3, whereas

inference from the EPA tests is very convenient for comparison of several competing models

(usually the case in empirical macroeconomics).

In this paper, special attention is paid to a test statistic proposed by Diebold and Mariano

(1995) which is a prominent member of the EPA family. Although the Diebold-Mariano (DM)

test is conceptually simple, easy to calculate, and very popular in empirical macroeconomics

and finance, its finite sample properties are not satisfactory – in fact, the magnitude of a size

distortion makes the DM test unreliable for empirical applications (see Tables 1– 2 in this pa-

per). This paper contributes to the literature by considering a bootstrap-based Diebold-Mariano

(BDM) statistic. It is shown that the BDM test is very easy to compute, it has very good size

and reasonable power properties in finite samples, which makes the BDM test conservative,

yet reliable for empirical applications.

The paper is organized as follows. The original and bootstrap-based Diebold-Mariano test

statistics are discussed in Section 2. Section 3 examines the finite-sample properties of both

statistics by means of Monte Carlo experiments. Section 4 presents an application of the

tests to the selected indicators from the US Survey of Professional Forecasters. Section 5

summarizes and concludes.

3For instance, White (2000) uses the reality check approach when comparing 3,654 competing forecast strate-
gies for asset returns.
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2. ORIGINAL AND BOOTSTRAP DIEBOLD-
MARIANO TESTS

Consider {(X1,t, X2,t) : t ∈ Z} of being a pair of the covariance stationary and pairwise cor-

related forecast errors coming from two alternative (non-nested) models. Then, Diebold and

Mariano (1995) proposed a conceptually simple statistic for testing the equal forecast accu-

racy of two competing models based on testing that the population mean of the loss differential

E(dt) = E[G(X1,t) − G(X2,t)] is zero, where G(X) represents a loss function. The authors

consider a mean squared error (MSE) measure for which G(X) = X2.4 It follows from the CLT

of dependent observations (see White (2001, Theorem 5.20)) that

√
n(d̄− E(dt))

d−→ N(0, σ2), (1)

where d̄ = n−1
∑n

t=1(X
2
1,t −X2

2,t) stands for a sample analogy of the loss differential and σ2 =∑∞
j=−∞ γj denotes the long-run variance and γj stands for the autocovariance at lag j.5 The

authors propose to use a standard t-test for testing the null hypothesis that E(d) = 0, that is

D =
√
n

(
d̄

σ̂

)
d−→ N(0, 1), as n→∞. (2)

The null hypothesis of the equal forecast accuracy is rejected at the nominal level 0 < α < 1

once |D| > q1−α/2, where q1−α/2 is the 1 − α/2 quantile of the N(0, 1) distribution.6 Motivated

by the literature on estimation of the asymptotic variance in the presence of weak dependence,

the following estimator is used

σ̂2 =
m∑

j=−m
w(j/m)γ̂j , where w(j/m) =

(
1− |j|

m+ 1

)
, (3)

where w(·) are the Bartlett weights, m is a real-valued bandwidth such that m→∞ and m/n→
0 as n → ∞, and γ̂j = n−1

∑n
t=j+1(dt − d̄)(dt−j − d̄) denotes a sample autocovariance at lag

j. The lag order m is usually determined using an automatic lag selection procedure proposed

by Newey and West (1994).7

4Note that other loss functions can be considered as well. See Remark 4 in this paper.
5Note that the Gaussian distribution asymptotically holds also for nested forecasting models provided that the

forecast horizon is fixed and the sample size increases (see West (2006)).
6Note that the DM test can be used for testing the one-sided hypothesis as well.
7Note that the lag order m is sometimes linked to the forecast horizon h (see Harvey, Leybourne, and Newbold

(1997, p. 282)). This argument is motivated by the fact that the h-step ahead forecast errors from dynamic time
series models (e.g. ARMA models) follow an MA(h − 1) process. However, this assumption holds under rather
unrealistic assumptions such that the model is correctly identified (i.e. the error terms are white noise) and the
model parameters are known. Therefore, we hold the view that a Wold representation provides a more realistic
approximation to the true data generating process of empirically observed forecast errors. See also Appendix A for
further details.
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It is worth remarking that the finite sample properties of the DM test are poor – the test suffers

from a serious size distortion which increases with the persistence of the forecast errors and

with the forecast horizon (see, e.g., Harvey, Leybourne, and Newbold (1997) for Monte Carlo

evidence). The small-sample correction of the DM test discussed in Harvey, Leybourne, and

Newbold (1997) altogether with using the Student t distribution as the limiting distribution in

(2) provide only a marginal improvement to a size distortion. The main problem with the DM

test is that although consistency of the estimator in (3) is well established in the literature (see

Andrews (1991, Theorem 1)), it is highly inaccurate (downward biased) for persistent stochastic

processes in finite samples (see Andrews (1991)). As a result, convergence of the empirical

distribution of the DM statistic to its limiting Gaussian (or Student) distribution is rather slow.

Andrews and Monahan (1992) and Müller (2014) suggest to pre-white the observed data with

a fixed-order AR (AR(1) respectively) model and use the estimated parameters to calculated

the target quantity (i.e. the long-run variance in our case).8 Although the authors demonstrate

some improvements in estimates of the long-run variance in finite samples, the problem here is

that this approach requires the existence of the closed-form expression of the target quantity.

This fact limits the use of this approach in practice. Another, and a more general solution, is to

apply a bootstrap technique to calculate the long-run variance (see Goncalves and Vogelsang

(2011)). This approach is particularly useful in cases where the limiting distribution of a given

statistic is an asymptotically pivotal quantity (as in our case – see (2)) (see Davison and Hinkley

(1997, p. 40)).

Without loss of generality we consider a real-valued Wold representation for the bivariate fore-

cast errors9 xt = (X1,t, X2,t)
′ given by

xt = µ+

∞∑
j=1

ψjεt−j + εt, t ∈ Z, (4)

where µ ∈ R2 and the error sequence {εt : t ∈ Z} is assumed to be a strictly stationary

and ergodic vector of innovations such that E(εt) = 0, E(εtε
′
t) = Σ, which is a symmetric and

positive definite matrix, E(||εt||8) <∞ and the density function f(εt) is absolutely continuous on

R2.10 Additionally, we assume the spectral density matrix of xt fulfils the boundedness condition

– eigenvalues of the density matrix are uniformly bounded away from zero at all frequencies

λ ∈ [−π, π]. Under additional mild assumption about invertibility, it is easy to show that the

8For instance, the long-run variance of an AR(1) process is γ0 = σ2/(1−φ2), where φ denotes the AR coefficient
and σ2 is the residual variance.

9It is worth remarking that a Wold representation is often considered as a representative stochastic process
for forecast errors in the literature (see, e.g., Diebold and Lopez (1996) or Mariano and Preve (2012)). See also
Footnote 7 and Appendix A for further details.

10Note that a rather strict moment condition can be weaken using a different loss function. For instance, when
considering the mean absolute error loss function, only the first four moments are required to be finite.
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process in (4) can be rewritten into the form of a bivariate VAR(∞) model

xt = c+
∞∑
j=1

φjxt−j + εt, t ∈ Z, (5)

where the roots of the lag polynomial det(I−
∑∞

j=1φjz
j) lie outside the unit disk and I denotes

a (2× 2) identity matrix. We also assume that the summability condition
∑∞

j=−∞(1 + |j|)||Γj || <
∞ holds, where Γj is the vector autocovariance of xt at lag j. These conditions are necessary

to ensure to validity of a bootstrap procedure discussed in the next paragraph (see condition A

in Meyer and Kreiss (2014)).

The functional form of weakly dependent forecast errors in (5) immediately suggests the use

of a VAR-sieve bootstrap of Paparoditis (1996) and Meyer and Kreiss (2014) to calculate

more accurate critical values of the DM statistic in finite samples. The VAR-sieve bootstrap

is particularly attractive because VAR modelling is a well-studied problem in the literature

and, therefore, the procedure can be implemented in a straightforward way (see, e.g., Choi

and Hall (2000), Psaradakis (2003a,b), Alonso, Peña, and Romo (2002, 2003), Chang and

Park (2003), Kapetanios and Psaradakis (2006), Gonçalves and Kilian (2007), Poskitt (2008),

Fuertes (2008), Palm, Smeekes, and Urbain (2010), Psaradakis (2015) for other applications

of a sieve bootstrap).

The procedure applied to generate bootstrap based critical values of the Diebold-Mariano test

statistic (BDM) is summarized in the following algorithm.

Algorithm 1 (i) Select an appropriate lag order p of a VAR model for a bivariate forecast error

vector {xt : t = 1, . . . , n} using the Akaike information criterion (AIC), where the lag order

is restricted by 0 ≤ p ≤ 5 log10(n), where n denotes the sample size.11

(ii) Estimate the unknown VAR parameters by the multivariate least-squares (LS) method

(see Lütkepohl (2005, Ch. 3). Note that the setup of the the upper lag order is sufficient to

ensure consistency of the estimated VAR parameters at the desired rate (see condition B

in Meyer and Kreiss (2014)).12

(iii) Construct a sequence of the estimated residuals {ε̂t : t = p+ 1, . . . , n} by the recursion

ε̂t = xt − ĉ−
p∑
j=1

φ̂jxt−j .

11Note that other lag order selection criterion such as the Bayesian information criterion (BIC) could be used, but
since the processes are not assumed to be of finite dimensions, the AIC is asymptotically efficient (see Shibata
(1980))

12In contrast to Bühlmann (1997) and Meyer and Kreiss (2014), who implemented the Yule-Walker (YW) estimator,
we rely on the multivariate LS estimator. The main reason for doing so is that the LS estimator produces superior
results as compared to the YW estimator (see Tjøstheim and Paulsen (1983)).
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(iv) Draw a random vector {ε̂∗t : t = 1, . . . , n + 100} from a bivariate empirical distribution

function given by

F̂n(u) =
1

n− 2p− 1

n∑
t=p+1

I(ε̂t ≤ u),

where I(·) denotes a standard indicator function and u ∈ R2.

(v) Generate bootstrap replicates {x∗t : t = 1, . . . , n+ 100} by the recursion

x∗t = ĉ+

p∑
j=1

φ̂jx
∗
t−j + ε̂∗t .

where the process is initiated by a vector of sample averages (x∗−p+1, . . . ,x
∗
0) = (x̄, . . . , x̄)

where x̄ = n−1
∑n

t=1 xt. The first 100 data points are then discarded in order to eliminate

start-up effects and the remaining n data points are used. Consistently with the null hy-

pothesis (i.e. the equality of mean squared forecast errors: E(X2
1,t) = E(X2

2,t)), generate

the normalized bootstrap vector z∗t = (Z∗1,t, Z
∗
2,t)
′ according to

Z∗1,t = X∗1,t

√
(ω2

1 + ω2
2)/2ω2

1,

Z∗2,t = X∗2,t

√
(ω2

1 + ω2
2)/2ω2

2,

where ω2
i = n−1

∑n
t=1X

2
i,t denotes the sample second raw moment.

(vi) Construct a bootstrap analogy of the DM test statistic B∗ using (2)-(3) but calculated from

the normalized bootstrap samples {z∗t : t = 1, . . . , n}.

(vii) Repeat steps (iv)–(vi) independently B times to get a sample of the bootstrap DM statis-

tics {B∗j : j = 1, . . . , B}. Then, the sampling distribution of the B test statistic is ap-

proximated by the empirical distribution function associated with {B∗j : j = 1, . . . , B}:
H∗(u) = B−1

∑B
j=1 I(B∗j ≤ u), where u ∈ R. Finally, a bootstrap test of the nominal level

α rejects the null hypothesis if

|B| > inf{u : H∗(u) ≥ (1− α/2)},

where B is the DM test statistic obtained from the observed samples {xt : t = 1, . . . , n}.

Remark 1: Since the DM test in (2) is constructed by rewriting (1), it is fully sufficient to focus on

the quantity d̄, the sample loss differential, when proving the validity of the VAR-sieve bootstrap.

Note that d̄ can be also written as follows

d̄ =
1

n

n∑
t=1

(
X2

1,t −X2
2,t

)
=

1

n

n∑
t=1

δ′(xt � xt) =
1

n

n∑
t=1

g(xt), (6)
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where xt = (X1,t, X2,t)
′, � denotes element-by-element multiplication and δ = (1,−1)′. Since

g(xt) function in (6) is continuously differentiable with bounded (second) partial derivatives,

condition C in Meyer and Kreiss (2014) is satisfied. The validity of the VAR-sieve bootstrap

thus follows directly from Theorem 4.1 in Meyer and Kreiss (2014).

Remark 2: An important question is to what extent the VAR-sieve bootstrap works for stochas-

tic processes not stemming from the representation in (5). One can argue that the closure of a

VAR(∞) representation in (5) is fairly large which means that for any non-linear stochastic pro-

cess there exist another process in the closure of linear processes (see Bickel and Bühlmann

(1997)). This finding implies that the VAR-sieve bootstrap is very likely to give satisfactory

results even for stochastic processes deviating from a Wold representation.

Remark 3: It is well known statistical fact that standard estimators of VAR models suffer from

a small sample bias (see, e.g., Yamamoto and Kunitomo (1984) and Engsted and Pedersen

(2014)). However, Kim and Durmaz (2012) show that a bootstrap bias correction does not nec-

essarily improve the forecast performance. The reason is that although a bootstrap procedure

reduces a bias, it tends to increase a variance, and thus, the impact on the MSE is ambigu-

ous. Therefore, the bootstrap bias correction of the estimated VAR parameters in Step (ii) of

Algorithm 1 is not implemented here.

Remark 4: It is worth remarking that the bootstrap procedure can be used also for other fore-

cast accuracy measures such as the mean absolute error (MAE) (i.e. G(X) = |X|). It can be

shown that the MAE is continuously differentiable almost everywhere for X ∈ R.13 Our addi-

tional simulation experiments show the BDM test based on the MAE works works as well as for

the MSE measure.14

3. MONTE CARLO SIMULATIONS
In this section, the size and power properties of the proposed BDM and DM test statistics are

assessed by means of Monte Carlo experiments.

3.1 EXPERIMENTAL DESIGN

Following Christensen, Diebold, Rudebusch, and Strasser (2007), the experiments are based

on artificial data generated according to various configurations of AR(1) models given by15

Xi,t = ci + φiXi,t−1 + κiεi,t, for i ∈ {1, 2}. (7)

13Note that the fact that the MAE is not continuously differentiable at a single point X = 0 does not represent a
problem for forecast errors drawn from a continuous distribution.

14The results are available from the author upon request.
15It can be shown that an AR(1) model is a good approximation to the empirically observed forecasts errors (see

Appendix A for further details).
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The configuration of individual parameters is as follows:

M1: c1 = c2 = 0.2, φ1 = φ2 = 0.5, κ1 = κ2 = 1.0;

M2: c1 = c2 = 0.2, φ1 = φ2 = 0.8, κ1 = κ2 = 1.0;

M3: c1 = 0.4, c2 = 0.2, φ1 = φ2 = 0.8, κ1 = κ2 = 1.0;

M4: c1 = c2 = 0.2, φ1 = 0.8, φ2 = 0.5, κ1 = κ2 = 1.0;

M5: c1 = c2 = 0.2, φ1 = φ2 = 0.8, κ1 =
√

2.0, κ2 = 1.0;

Note that M1 and M2 models are used to asses the size properties of the tests, whereas

M3 – M5 models assess the power properties. Experiments proceed by generating 1,000

independent artificial time series {(X1,t, X2,t) : t = 1, . . . , 100 + n} with n ∈ {50, 100, 200} for

each design point. The first 100 data points of each series are then discarded in order to

eliminate start-up effects and the remaining n data points are used to compute the value of

the BDM and the DM test statistics. In each case, the bivariate vector of correlated errors

εt = (ε1,t, ε2,t)
′ is calculated as εt = Pvt, where vt = (v1,t, v2,t)

′ are bivariate independent

random varieties drawn from either N(0, 1) or t(10) distributions and P is the lower triangular

matrix of the Choleski decomposition of the correlation matrix R with the pairwise correlation

coefficient ρ such that

R =

[
1 ρ

ρ 1

]
= PP ′, where P =

[
1 0

ρ
√

1− ρ2

]
.

Two values of the pairwise correlation ρ ∈ {0.25, 0.75} between model innovations are consid-

ered for the Monte Carlo experiments.

3.2 SIMULATION RESULTS

The Monte Carlo rejection frequencies of the DM test based on (2)-(3) and the proposed BDM

test based on Algorithm 1 of nominal level 0.10 (the level usually used in the forecasting litera-

ture) are reported in Tables 1 – 2. The results suggest the following:

(i) For all relevant data points (see models M1 and M2), the proposed BDM test has empirical

levels very close to the nominal level 0.10, regardless of the sample size n and the pairwise

correlation ρ of model innovations, whereas the original DM test exhibits a serious size dis-

tortion even in a relatively large sample (e.g. n = 200). The size distortion of the DM test

is negatively affected mainly by the persistence of data (compare the results for M1 and M2

models), whereas the cross-correlation between forecast errors plays a minor role.

(ii) As might be expected, some power loss is observed in the case of the BDM test as compared

to the original DM test. Nevertheless, the power results improve quickly with the increasing
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sample size n. In any case, the observed power loss is not of a magnitude that makes the BDM

test unattractive for applications.

(iii) No significant differences in the size and power results of the BDM and DM tests are ob-

served for Gaussian and heavy-tailed innovations.

Table 1: Empirical Rejection Frequencies of the BDM and DM Tests: N(0, 1) innovations
n = 50 n = 100 n = 200

ρ = 0.25 ρ = 0.75 ρ = 0.25 ρ = 0.75 ρ = 0.25 ρ = 0.75
DGP B D B D B D B D B D B D
M1 0.08 0.19 0.07 0.16 0.10 0.16 0.09 0.15 0.09 0.11 0.10 0.14
M2 0.10 0.32 0.09 0.29 0.09 0.24 0.10 0.25 0.09 0.19 0.11 0.21
M3 0.22 0.53 0.39 0.68 0.38 0.60 0.61 0.82 0.59 0.76 0.88 0.95
M4 0.30 0.64 0.46 0.80 0.64 0.87 0.78 0.96 0.93 0.98 0.99 1.00
M5 0.20 0.47 0.32 0.61 0.32 0.54 0.57 0.76 0.53 0.70 0.82 0.92

Table 2: Empirical Rejection Frequencies of the BDM and DM Tests: t(10) innovations
n = 50 n = 100 n = 200

ρ = 0.25 ρ = 0.75 ρ = 0.25 ρ = 0.75 ρ = 0.25 ρ = 0.75
DGP B D B D B D B D B D B D
M1 0.08 0.18 0.06 0.17 0.08 0.14 0.09 0.15 0.09 0.13 0.09 0.13
M2 0.09 0.28 0.11 0.30 0.09 0.24 0.09 0.24 0.10 0.20 0.10 0.20
M3 0.20 0.46 0.33 0.59 0.31 0.53 0.52 0.73 0.49 0.66 0.80 0.88
M4 0.31 0.64 0.44 0.79 0.54 0.81 0.75 0.94 0.91 0.97 0.99 1.00
M5 0.21 0.49 0.31 0.63 0.31 0.53 0.55 0.77 0.52 0.68 0.84 0.92

4. DO PRIVATE FORECASTERS BEAT TIME

SERIES MODELS?
As mentioned earlier, accurate forecasts of economic variables are of the fundamental im-

portance not only for the measures of central banks but also for economic decisions of firms

and households. In this section, a question whether professionals can beat forecasts from

simple (autoregressive) time series models is briefly discussed.16 Due to long history and a

large number of economic variables, we evaluate forecasts from the US Survey of Professional

Forecasters (SPF) and linear autoregressive models using the proposed BDM test. The null

hypothesis

H0 : MSE(SPF ) = MSE(AR) against H1 : MSE(SPF ) 6= MSE(AR)

16The interested reader is referred to the Federal Reserve Bank of Philadelphia website for a list of approximately
80 related research papers.
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Table 3: P -values of the BDM and DM Test Statistics
1983 Q1 – 2012 Q3 1991 Q1 – 2012 Q3

variables horizon B D B D
AAA 1 0.389 0.098 0.071 0.023

2 0.586 0.168 0.220 0.108
3 0.300 0.212 0.324 0.147
4 0.307 0.192 0.398 0.198

TBILL 1 0.080 0.034 0.121 0.051
2 0.282 0.133 0.265 0.154
3 0.385 0.221 0.436 0.317
4 0.463 0.318 0.541 0.425

PGDP 1 0.097 0.062 0.485 0.454
2 0.109 0.033 0.557 0.401
3 0.187 0.034 0.455 0.315
4 0.056 0.009 0.207 0.048

GDP 1 0.130 0.069 0.265 0.177
2 0.417 0.331 0.994 0.993
3 0.693 0.681 0.825 0.806
4 0.734 0.681 0.900 0.877

IP 1 0.182 0.114 0.291 0.198
2 0.305 0.217 0.363 0.222
3 0.258 0.147 0.270 0.161
4 0.343 0.246 0.244 0.147

UR 1 0.019 0.003 0.027 0.014
2 0.029 0.006 0.079 0.030
3 0.064 0.013 0.101 0.037
4 0.025 0.006 0.022 0.012

HOUS 1 0.059 0.013 0.158 0.045
2 0.109 0.034 0.245 0.093
3 0.141 0.043 0.235 0.078
4 0.138 0.044 0.221 0.050

is tested for the following set of forecast errors with the forecast horizon from 1 up to 4 quarters:

the 3-month Treasury Bill rate (TBILL), the AAA Corporate Bond yield (AAA), the real Gross

Domestic Product growth rate (RGDP), the GDP deflator growth rate (PGDP), the Industrial

Production growth rate (IP), the Unemployment rate (UR), and the Housing Starts (HOUS).17

Due to an institutional break in the survey – the Federal Reserve Bank of Philadelphia took over

the survey from the National Bureau of Economic Research in 1990 – we conduct our analysis

over two different sub-samples: (i) 1983 Q1 – 2012 Q4 (i.e 120 observations); and (ii) 1991 Q1

– 2012 Q4 (i.e. 88 observations). Note that the SPF and AR model forecasts of the selected

variables, including the forecast errors, are publicly available at the Federal Reserve Bank of

Philadelphia website.18

The p-values of the BDM (based on B = 1, 000 bootstrap replications) and DM tests are pre-
17For all selected variables, the first data releases are considered. Similar results are obtained for later data

vintages. Results are available from the second author upon request.
18www.philadelphiafed.org

ON A BOOTSTRAP TEST FOR FORECAST EVALUATIONS
Working Paper NBS

5/2015
12



sented in Table 3. The results reveal dramatic differences in rejecting the null hypothesis. In

particular, the BDM test rejects the null only in about 29% (14%) of cases at the nominal level

0.10, whereas the original DM in 54% (39%) using the long- (short-) sample. Put differently,

the original DM test overrejects the null of the equal forecast accuracy hypothesis by factor 2

– 3 as compared to the BDM test. According to the reliable BDM test, the results indicate that

the professionals beat the AR model forecasts systematically (over all forecast horizons) only

for a single economic variable – the unemployment rate. This conclusion is perhaps not very

surprising since the unemployment rate exhibits a high degree of business cycle asymmetry

which might be predicted by professionals (based on previous experience) but not by linear

AR models. What is more, we cannot find evidence of the systematic superior forecast perfor-

mance of professionals in the case of interest rates (i.e. TBILL and AAA variables). This result

is somewhat surprising keeping in mind the importance of the interest rates for the financial

industry.

5. CONCLUSION
This paper has considered a new bootstrap-based Diebold-Mariano test statistic for testing

for the equal forecast accuracy between two alternative forecast models/methods. We have

shown that the BDM test has very good size and reasonable power properties in finite samples,

making the BDM test conservative, yet reliable. Empirical results reveal dramatic differences in

inference between the DM and BDM statistics.
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A. DO EMPIRICALLY OBSERVED FORECAST

ERRORS FOLLOW AN MA PROCESS?
In this section, we analyze the empirically observed forecast errors in order to shed some light

on the question whether the h-step ahead forecast errors follow an MA(h− 1) process or rather

a more complex ARMA model, for which a Wold representation might be a reasonable approx-

imation. This question is important not only theoretically to ensure validity of the VAR-sieve

bootstrap (see Section 2) but also for the appropriate setup of the Monte Carlo experiments

and, thus, reliability of their results (see Section 3).

Provided that the h-quarter ahead forecast errors follow a pure MA(h−1) process, then only the

first h − 1 autocorrelations should be statistically significantly different from zero, whereas the

partial autocorrelations should decay gradually towards zero (see Box, Jenkins, and Reinsel

(2008)). The estimated sample autocorrelations and partial autocorrelations of the 4-quarter

ahead SPF and AR forecast errors for all selected economic variables are depicted in Fig-

ures 1-14 (including the asymptotic 95 % confidence intervals). The results indicate that an

assumption about MA processes of forecasts errors is clearly violated for all economic vari-

ables under consideration. We can also conclude that an AR representation seems to be a

reasonable approximation for the forecasting errors.19 If this hypothesis is about to be correct,

then the estimated residuals from an identified AR model should be white noise. For this rea-

son, the AR models (with automatically determined lag order) are fitted to observed forecast

errors and the estimated residuals are then inspected using both the Ljung-Box portmanteau

(LBQ) test and McLeod and Li portmanteau (MLQ) test with the lag order set to 10 (which

is a reasonably small number as compared to the sample). The asymptotic p-values of the

diagnostic tests are presented in Table 4. Although some differences between the SPF and

AR models are observed, neither serial correlation nor heteroscedasticity is a serious problem

for the estimated residuals. In particular, the null hypotheses about serial correlation and con-

ditional heteroscedasticity are rejected only in less then 1/3 of the cases at the nominal level

0.10.20

19Note that similar results are obtained for the forecast errors with a different forecast horizon h ∈ {1, 2, 3}.
20Note that very similar results are obtained for other lag configurations of the diagnostic tests.
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Figure 1: SPF (AAA)

lag

ρ

ACF

2 4 6 8
−0.5

0

0.5

1

lag
π

PACF

2 4 6 8
−0.5

0

0.5

1

Figure 2: SPF (TBILL)
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Figure 3: SPF (PGDP)
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Figure 4: SPF (GDP)
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Figure 5: SPF (IP)
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Figure 6: SPF (UR)
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Figure 7: SPF (HOUS)
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Figure 8: AR (AAA)
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Figure 9: AR (TBILL)
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Figure 10: AR (PGDP)
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Figure 11: AR (GDP)
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Figure 12: AR (IP)
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Figure 13: AR (UR)
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Figure 14: AR (HOUS)
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Table 4: P -values of the Diagnostic Tests
SPF AR

1983 Q1 – 2012 Q3 1991 Q1 – 2012 Q3 1983 Q1 – 2012 Q3 1991 Q1 – 2012 Q3
variables horizon LBQ MLQ LBQ MLQ LBQ MLQ LBQ MLQ

AAA 1 0.74 0.10 0.25 0.11 0.10 0.18 0.08 0.45
2 0.36 0.02 0.82 0.97 0.14 0.42 0.01 0.11
3 0.13 0.72 0.55 0.46 0.00 0.00 0.01 0.02
4 0.33 0.85 0.38 0.66 0.00 0.03 0.23 0.16

TBILL 1 0.20 0.05 0.76 0.03 0.34 0.11 0.62 0.02
2 0.08 0.64 0.17 0.25 0.39 0.01 0.47 0.01
3 0.07 0.19 0.12 0.11 0.23 0.02 0.09 0.05
4 0.14 0.83 0.03 0.35 0.28 0.61 0.38 0.10

PGDP 1 0.15 0.57 0.04 0.89 0.22 0.08 0.09 0.81
2 0.67 0.79 0.03 0.68 0.40 0.91 0.53 0.68
3 0.05 0.78 0.03 0.60 0.05 0.92 0.02 0.54
4 0.43 0.56 0.05 0.82 0.14 0.38 0.08 0.48

GDP 1 0.65 0.01 0.97 0.07 0.44 0.06 0.46 0.12
2 0.59 0.22 0.83 0.17 0.44 0.65 0.59 0.38
3 0.63 0.69 0.89 0.42 0.14 0.55 0.30 0.65
4 0.35 0.24 0.70 0.34 0.56 0.32 0.81 0.36

IP 1 0.72 0.26 0.57 0.12 0.21 0.00 0.33 0.00
2 0.30 0.05 0.40 0.21 0.43 0.00 0.53 0.00
3 0.69 0.04 0.75 0.03 0.02 0.00 0.35 0.11
4 0.80 0.01 0.59 0.25 0.04 0.07 0.08 0.01

UR 1 0.95 0.79 0.73 0.47 0.96 0.18 0.31 0.50
2 0.86 0.80 0.74 0.84 0.81 0.80 0.15 0.84
3 0.37 0.82 0.15 0.94 0.56 0.74 0.04 0.97
4 0.18 0.94 0.34 0.93 0.60 0.84 0.20 0.95

HOUS 1 0.16 0.08 0.22 0.36 0.24 0.86 0.18 0.47
2 0.18 0.86 0.09 0.75 0.09 0.80 0.64 0.98
3 0.57 0.25 0.18 0.28 0.82 0.69 0.64 0.64
4 0.60 0.31 0.23 0.05 0.36 0.29 0.20 0.19
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